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A PARAMETRIC STUDY OF THE IBRAHIM TIME DOMAIN
MODAL IDENTIFICATION ALGORITHM

Richard S. Pappa
Structural Dynamics Branch
NASA Langley Research Center
Hampton, Virginia

and

Samir R. Ibrahim
Department of Mechanical Engineering and Mechanics
0ld Dominion University
Norfolk, Virginia

The accuracy of the Ibrahim Time Domain (ITD) identification algorithm in
extracting structural modal parameters from free-response functions has
been studied using computer-simulated data for 65 positions on an isotropic,
uniform-thickness plate, with mode shapes obtained by NASTRAN analysis.
Natural frequencies, damping factors, and response levels of the first

15 plate modes were arbitrar:ily assigned in forming the response functions,
to study identification results over ranges of modal parameter values and
user-selectable algorithm constants. Effects of superimposing various
levels of noise onto the functions were investigated in detail. A partic-
ularly interesting result is that no detrimental effects were observed
when the number of computational degrees-of-freedom allowed in the algo-
rithm was made many times larger than the minimum necessary for adequate
identification. This result suggests the use of a high number of degrees-
of-freedom when analyzing experimental data, for the simultaneous identifi-
cation of many modes in one computer run. Details of the procedure used
for these identifications are included.

INTRODUCTION An additional future use of experimen-
tally determined modal parameters, of

A fundamental problem in experi- current research interest to NASA, is 1in

mental structural dynamics is the accu- the active attitude control of large

rate determination of parameters space structures.

characterizing the important vibration

modes of a test structure. These param- Obviously, the applications and

eters--natural frequencies, damping corresponding accuracies which are re-

factors, and mode shapes--are used for quired of these data vary considerably.

a variety of purposes, including: Results adequate for one use may be un-~
acceptable for another. 1In addition,

1. trouble-shooting excessive accuracy requirements for particular
vibration or noise from mechan- applications may be difficult to quantify
ical equipment; arid may be subject to error. Establish-

2. dynamic analysis of portions ing the adequacy of experimental modal
of a structure that are too data still often includes a judgement
difficult to model analytically: of whether the most accurate set of data,

3. refinement or verification of within an allocated period of time, has
an analytical model; and been obtained.

4. direct calculation of dynamic
loads or response levels that Before the widespread use of mini-
a structure may experience computers in the laboratory, modal test-
during coperation. 1ng and analysis were conducted almost

exclusively with analog instrumentation.
As the advantages of digital computation
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because apparent, many data analysis
techniques that had been developed on the
analog systems were simply converted

to their digital counterparts. These
techniques are, in fact, still used today
in successfully measuring the dominant
modal patterns of "well-behaved® struc-
tures. Accompanying the conversion to
digital-based laboratory equipment was
an increased use of random force, as
opposed to sinusoidal force, for exciting
test structures. This trend was closely
related to the revolutionary switch in
the late 1960's to fast Fourier trans-
form (FFT) methods for rapidly computing
frequency-domain characteristics of ran-
dom response signals. Although mary
structures are still tested with the
classical multiple~shaker, sine-dwell
approach, the majority of experimental
dynamists now select the faster random-
force methods for modal testing.

A standard step in the data-reduc-
tion phase of most modal test programs
is the computation of frequency-domain
characteristics of the measured struc-
tural responses. In controlled ground
vibration tests where the input force(s)
as well as the responses can be accurate-
ly measured, acceleration/force frequency
response functions are usually formed;
in cases where the input forces cannot be
measured, the response information alone
is used. Many single- and multi-degree-
of-freedom algorithms have been developed
to identify the structural modal paraa-
eters by curvefitting analytical expre:v-
sions to these data ?1]. Single-degree-
of-freedom methods use a few dara points
near each resonant frequency for quickly
estimating the modal parameters of one
mode at a time. Because in these tech-
niques it is assumed that the overall
response near each resonance is dominated
by the characteristics of a single mode,
however, the degree of modal coupling in
any frequency interval significantly
affects identification results. On the
other hand, multi-degree~-of-freedom algo-
rithms, developed to identify the param-
eters of several modes simultaneously,
nearly always work well on data that can
be reasonably analyzed with single- legree~
of-freedom methods, but may differ appre-
ciably in more difficult cases.

Various aspects of using time-
domain response data rather than frequen-
cy-domain functions in the experimental
modal identification of structures excit-
ed by random forces(s) nave been dis-
cussed pr2viously by Ibrahim [2-€]. An
early multi-degree-of-freedom time-domain
identification procedure [2] required
numerical integration (assuming the
measurement of acceleration resporises)
to obtain displacement and velocity time
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histories at each response measurement
point, in addition to the measured ac-
celeration time histories. This approach
was later abandoned in favor of a more
straightforward method (3] in which any
one of displacement, velocity, or ac-
celeration free-response functions are
used in an eigenvalue solution scheme

to obtain the desired modal parameters.
This newer procedure is referred to in
this paper as the ITD ("Ibrahim Time
Domain”) algorithm. The term “"free-
response"” function is used throughout
this paper to denote any of three time
response forms which may be used in the
identification algorithm: actual free-
decays measured following random excita-
tion of a structure; unit-impulse-
response functions formed by inverse
Fourier transformation of frequency
responge functions; or “random~decrement”
functions [4] computed from random
operating time histories.

The ITD algorithm has been used
to analyze test data from several struc-
tures{7,eg]. As now implemented, the
identification process is a "blind" tech-
niqgue, requiring a minimal amount of
operator input to compute parameters
for many modes from a set of free-
response functions. A large number of
structural modes, often 20 or more, are
identified in a single computer run. In
general, the parameters computed for the
dominant modes of these structures agreed
well with those obtained by other methods.
Parameters for modes identified by the
ITD analyses, but not determined with
other analysis methods, however, lacked
verificatior and their accuracy was
rightfully questioned.

The work reported in this paper was
inictiated to help interpret these experi-
mental results. For this study, compu-
ter-simulated free-response data, for
linear, multi-mode models with known
modal parameters, were processed with
the ITD algorithm. The identified para-
meters were used to quantify the ability
and accuracy of the identification pro-
cess, to look for anomalous numerical
behavior under severe identification
conditions, and to compare results for
ranges of the few user-selectable algo-
rithm constants. The modeling approach
consisted of constructing free-response
functions for 65 positions on an isotro-
pic, uniform-thickness rectangular plate
by the linear summation of the free-res-
ponses of the first 15 analytical modes.
The mode shapes were obtained from a
finite-element analysis, and modal fre-
quencies, damping factors, and response
levels were arbitrarily assigned for
each desired modal model. Various
levels of noise, calculated on an rms-



parcentaga basis, were superimposed
onto the free-response functions.

Techniques for obtaining distortion-
free sets of free-response functions
from experimental measurements, an
important phase in the modal identifi-
cation process when the ITD algorithm
is used, are not addressed in this paper

Somewhat new terminology is used in
describing the algorithm. To avoid con-
fusion in correlating the identifi~
cation results with the usage of the
free-response data in the procedure,
complete details of the technique are
included. The methods used in con~
structing the free-response functions
and in quantifying the accuracy of
identified mode shapes are described
in the following report sections. The
remainder of the report contains a sum-
mary of the identification results.
These data illustrate typical identifi-
cation accuracies over a wide range of
simulated modal models and user-selec-
table algorithm constants.

LIST OF SYMBOLS

ax + ibx k'th complex eigenvalue of [A]
A the "system” matrix
AlT Transpose of [A]

c a damping coefficient

(C/Ce)k damping factor (fraction of
critical damping) of k'th
mode

fx frequency corresponding to
k'th eigenvalue of [A

£x multiples of the frequency
1/7(2(at) 3)

fq *“folding frequency" based
on (At))

i measurement station index

b time index

k mode index

K a spring constant

m number of assumed modes
(= NDOF)

M a mass

N3,N2,N3 number of time samples cor-
responding to (At)], (At)y,
and (At)3

Po number of response measuremerts
available

s number of time samples in
each free-response function
(= NCOL)

ty time instant 3j

T total time length of response
functions

x5 free-response of station i
at time instant j

(4t) 1 time increment between the two
rgﬁponse matrices, [¢] and

(at), time increment in forming

"transformed stations"”
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time increment between data in
upper and lower halves of the
response matrices

At an arbitrary time increment

€ a small uncertainty in an
eigenvalue determination

(At) 5

Ok angular position of k'th
eigenvalue in the a-b plane

A characteristic value of mode k

[k] a matrix of complex exponen-~
tials

oy damping value of k'th mode
(= real part of characteris-
tic value)

Ok2 damping value of k'th mode
using alternate method

(¢] response matrix whose rows
contain the free-response

" functions

[¢] The [¢] matrix delayed (At);

{v}x complex eigenvector of mode k

(¥] matrix whose columns are the

“ system's eigenvectors

(v¥] the [¥] matrix with responses
delayed (4t)]

(wg) k damped natural frequency of
k'th mode (= imaginary part
of characteristic value)

(wn)k undamped natural frequency of
k'th mode

ITD Ibrahim Time Domain (technique)

MAR Modal Amplitude Ratio

MCF Modal Confidence Factor

MSCC Mode Shape Correlation Constant

NCOL N\tugkier of Columns in [¢] and

¢

NST Number of (measurement)
Stations used in calculation
of OAMCF

OAMCF Overall Modal Confidence Factor

RMS Root-Mean-Square (value)

SF data Sampling Frequency

(= reciprocal of time interval
between data samples)

THEORY OF THE IDENTIFICATION TECHNIQUE

The Eigenvalue Solution Approach

The characteristic equation for a
classical single-degree-of-freedom struc-
tural system, governed during its free
response by

M% +Cx+Kx=20 (1)

A2 M+ AC+EK=

is 0, and the general
solution form is x(t) = y ert. For an
overdamped system, ¢ and )\ are both

real-valued; for an urderdamped system,
they are complex, occurring in conjugate
pairs.

In the more common underdamped case,
the roots of the characteristic eguation



are A = 0 * } Wy where w is the
damped natural frequency in radians/sec-

ond, wp = a2 + wdz the undamped natu-
ral frequency, and ¢§ = ¢/w, the damping
factor or fraction of critical damping,
C/Ce-

For a linear multi-degree-of-free-
dom system with m excited modes, the
free response of the structure at any
(measurement) station i and instant of
time tj can be expressed by the sum-
mation O0f the individual response of each
mode as:

2m thj
xg(€g) = % = 2 Vip © (2)
k=1

where ¢, and 1A, are both complex
numbers, 1n general. Note that the sum-
mation extends to 2m since there are
2m roots of the characteristic equation.

Free-response values for 2m sta-
tions and s instants of time, calcu-
lated using Eg. (2), can be arranged
into matrix form as:

11 *12 c ¥1g
le X22 P xzs
x2m,1 ce xZm,s
Y11 Y12 v V1,2m
You Y22 ot VY2,2m
= - . X
Yam,1 cee Wzm,zgj
[ae Lt At
o1f1 2 1%
Aat A ALt
o251 ztz.‘. o 2%s
. . (3)
Yoo t At
e 2m-1 . e 2m s
L 4
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or simply
[e] = [¥] [A]

(2m x §) = (2m x 2m) (2m x g}

(4)

Similarly, free-response values (4t);
later in time than those in Eq. (2),
measured at the same stations, can be
expressed as:

xi[}] + (At)i]
2m

Yik

X [t + (At)]
e k|73 1

Xk(At)i] exktj

]
\g)
lG J
9
H

o

(5)

or, in matrix form, for 2m stations and

S instants of time:

(8] = [¥] [A] (6)

(2m x s, = (2m x 2m) (2m x s)

For s>= 2m, [¥] and [@] are
related through Egs. (4) and (6),
eliminating A), by:

[a] [¥] = [¥] %))

(2m x 2m) (2m x 2m) = (2m x 2m)
where

(017 (a1 = 817 (8)

(s x 2m) (2m x 2m) = (s x 2m)

Since the columns of [¥] and [@] are
Ak(At)l

related from Eg. (5) by (¥}, = e
{¥}x, the complete system can now be
placed in the form of a single eigenvalue
problem as:

Ak(At)l

(AJv}, = e (vl (9)

The matrix [A] is referred to in this
paper as the "system matrix,"” and con-
tains information characterizing the
complete set of modal parameters of the
system.



The desired structural (damped)
natural frequencies and damping factors
are determined from the eigenvalues of
A (8t) 4

[A]r e = ay + ibk, by:

1 -1
(wd)k = 2w fk = m‘: tan (bk/ak)

2

(10)

1 2
O = 7TKETI ln(ak + bk

9%
‘/"k + lwg)y

The eigenvectors of [A] are the
desired (complex) structural mode
shapes,

(C/C)

{w}k.

Equations (8) and (9) formthe
basics of the solution approach: free-~
response functiong are placed into the
rows of ¢ and ¢; [A]T is obtained
by a least-squares solution of Eqg. (8);
and the complex eigenvalues and eigen-
vectors of [A) are then found, to
which the system's modal parameters
are directly related.

The dimension 'm' is referred
to throughout this paper as the "number
of allowed (computational) degrees-of-
freedom,” NDOF. This term should not
be confused with the more widely used
meaning of "degrees-of-freedom" as
the number of independent spatial coor-
dinates necessary to define the motion
of a system. The "number of assumed
modes" or the "order of the math model"
are other descriptors that have been
used to denote this fundamental analysis
constant. The matrix dimension '‘'s,'
the number of columns in [¢] amd [8]
(i.e., the number of time samples usged
from each free-response function), is
referred to throughout as NCOL. The
matrices [¢] and [¢] are referred
to as the two "response matrices."

Three distinct, user-selectable,
time shifts are used in positioning over-
lapping segments of the measured free-
response functions into the rows of the
response matrices. The fundamental time
increment between all data placed into

(4] and (&) is (At)]. Two other
time shifts, denoted by (At)2 and
{4t) 3, will be discussed in the report

section entitled "Transformed Stations
and Modai Confidence Factors.” The
number of cnsecutive time samples
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corresponding to each of the shifts
will be denoted hereafter by simply Nj,
N2, and N3, respectively.

Figure 1 provides an example of
the placement of free-response data into
the two response matrices, assuming that
three response functions are available.
In this example, NDOF and NCOL are se-
lected equal to 7 and 30, and the three
data shifts, Nj;, N3, and N3, are 3,
8, and 4. This figure should be used as
a reference in clarifying the definition
of each of these five primary user-
3electable analysis constants.

Solution Considerations

Equations (8) and (9) are forms
whose computer solution have been studied
in depth by numerical analysts. Eq. (8)
is an over-determined system of simulta-
neous linear equations, and Eq. (9) is
an algebraic eigenvalue problem, wherz
the (2m) eigenvalues of [A] are

)\k(At)1
e and the corresponding eigen-
vectors are {w}k.

The “"conventional transpose ap-
proach" of solving Egq. (8) consists of
pre-multiplying both sides by [¢] and
then solving for [A]T by any of several
methods for the solution of 2m simulta-
neous linear equations in 2m unknowns.
This is the approach used for the results
shown in this paper. In particular, pre-
multiplying Eq. (8) by [¢] results in:

(o) 1o1) a1T = (o] (319 an

Equation (li) was then solved by a stan-
dard Gaussian elimination subroutine
using an LU decomposition of the

([2] [¢]T) matrix of coefficients.

Other methods are available for
solving Eq. (8) which do nct require
the pre-multiplication of each side by
[4], [8,9]. These methods have been
developed for the expiress purpose of in-
creasing the solution accuracy when the
matrix of coefficients, i1n this case
(¢]T, is ill-conditioned; the pre-
multiplication will increase any ill-
conditioning of the coefficient matrix.
A limited number of comparison identifi-
cations have been run using two other
computer subroutines available for the
solution of Eq. (8), namely:

1. by singular value decomposition
of the coefficient matrix using
Householder transformations,
obtaining the isometric matrix
fu] and orthogonal matrix [Vv],



such that {¢#]T=(u])[Q][V]T, where
the singular values comprise the
diagonal matrix [Q]. The least-
squares solution is then formed
by (A)T=[v]{at][v)T[®]T, where
[{Qt] contains the reciprocals of
the non-zero values of (Q].

2. by using Householder trans-
formations to perform the QR
decomposition of the coeffi-
cient matrix, where [Q] is
an orthogonal matrix and [R]
is an upper triangular matrix.
The least-squares solution is
then formed as [A]Ta[R]"1(Q;]T
(¢)T, where {2] is partitioned
in the form [Q]=(Q;,Q3) with
(#1T={Q1] [R].

In all cases run using these other methods,
no changes in the computed modal param-
eters were observed to the precision used
in printing the results shown in this
paper. On the other hand, each of the
two methods described above crequired
considerably more computer memory to
implement using available FORTRAN sub-
routines than the conventional transpose
approach. In both cases, the ([¢]T and
[$]T matrices--each of size (s x 2m)-=-
needed to reside in core, whereas the
transpose method was implemented with

two matrices of order 2m each. Yor

a typical s/2m ratio of 3 used in many
of the identifications, selection of
either optional solution method required
a factor of 6 times more core storage.

The deta:ls of available tech-
niques for the solution of Eq. (8) are
compiled in several numerical analysis
textbooks [8,9]. A subroutine pack
containing 2 standardized set of computer
code for implementing these methods 1s
available [10].

The numerical techniques for solving
Eq. (9) are not as plentiful; the QR
method advocated by Wilkinson [8,11],
is the accepted approach for determining
the complete set of real and complex
eigenvalues and eigenvectors of [A],
a fully-populated general matrix with
real elements. This is the method used
to obtain all results presented in this
paper. A subroutire pack [12] con-
taining standardized code for the com-
puter solution of eigenvalue problems
is also available.
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"Transformed Stations" and

"Modal Confidence Factors"

Two aspects of the practical imple-
mentation of the method described thus
far, whicli have been discussed in pre-

vious papers [2,3,5), are: (1) piocess-
ing data when the number of available
free-response measurements is less than
the number of rows in [¢] (equal to
twice the number of degrees-of-freedom
desired in the identification process),
and (2) distinguishing those eigenvalues
of {A] corresponding to the desired
structural modes from those eigenvalues
corresponding to "noise modes," computed
whenever NDOF 1s larger than the number
of structural modes contributing to the
responses.

When the number of response measure-
ments that are available, say pg., 1S
less than the number of computational
degrees-of-freedom which are desired,
fewer than half the rows of [¢] are
filled by the original, unshifted,
response functions. Under these circum-
stances, "assumed" or "transformed”
stations [2] are created for the addi-
tional rows of both response matrices
by simply shifting the original functiors
placed in the first po rows by multi-
ples of a second user-selectable time
shift, (At)2: (At)2., 2(At),, 3(At)a,
etc., until the upper halves of both
matrices are filled. This process of
adding transformed stations does not
mathematically affect the eigenvalues of
the system matrix, [A], assuming perfect
identification. (If NDOF is selected
smaller than pg, only NDOF of the
available response functions are used in
the analysis.)

The bottom halves of the two
response matrices are formed by duplicat-
ing the upper rows, but delaying an
additional user-selectable time shift,
(At) 3. The rationa'le for fill:ng only
the upper halves of the matrices with
the available response functions (and
transformed stations) and filling the
bottom halves with a time-shifted form
of the upper halves is based on the cal-
culation of "Modal Confidence Factors,"
to be discussed next.

If two segments of a free-response
function obtained from the same measure-~
ment station, but separated by an
arbitrary time interval A4t, are placed
into different rows of the response

matrices, the elements in each computed
eigenvector of [A] corresponding to
these two rows, w;x and v ik, will be

related (again assuming perfect identifi-
cation) by:



A AT
I‘f - k
y ik wlk e (12)
for each linear structural mode k.
This fundamental property, Eq. (12),

and the time-shift relationship between
the data in the upper and lower halves
of the response matrices, (At),, are
used in the calculation of "Mogdal
Confidence Factors,” MCF [5], devised

to distinguish "noise modes" from the
desired structural modes. The (complex-
valued) MCF's for accurately identified
linear structural modes--one MCF cal-~
culated for each of the first po ele-
ments in each computed (complex)
eigenvector of [Ag--will cluster near
unity in amplitude and near 0° in phase;
those calculated for "noise modes”

will be randomly distributed in value.
To form the MCF's, the first pg ele~-
ments in the lower halves of the com-
puted eigenvectors are compared with
"expected” values for these elements,
calculated using Eq. (12) by the product
of the corresponding pg upper-half
eigenvector elements and the complex

Ak(At)

exponentials, e , where Ap are
the computed characteristic values. The
MCF is cdefined as the amplitude ratio and
phase difference between each of these
"expected" values and the corresponding
values computed by the eigenvalue
analysis. If the amplitude ratio is
-greater than 1.0, the reciprocal is
taken. The phase angle is normalized to
range hetween -1800 and 180°. Obtain-
ing MCF values near 100% in amplitude
and 0° in phase is certainly a necessary
(but not sufficient) condition to indi-
cate that an accurate identification of
a linear structural mode of the system
has been made.

This process can be thought of as
the comparison of two sets of eigen-
vectors, corresponding to the same set
of eigenvalues, computed simultaneously
for the system using two different
segments of the available free-response
functions. An important user advantage
in obtaining both sets »f eigenrectors
in one eigensolution is that no effort
is needed to "pair up" corresponding
eigenvectors if somewhat different
eigenvalues are computed for each set of
segments. A single eigenvalue set is
obtained using information derived from
both sets of data, and the two eigen-
vector sets are correctly compared in the
computer analysis with no user decisions
required.

an MCF is calculated in this manner
for each of the py stations, for each
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identified complex eigenvalue. To com-
pact this information to a more manage-
able ievel, an "Overall MCF," OAMCF, is
calculated for each "mode" (that is, for
each computed complex eigenvalue) as the
percentage of po stations whose MCF
values are at least 95% in amplitude and
within 10© of 0.0 in phase. The OAMCF
parameter, introduced for this study, has
been found very effective in distinguish-
ing the desired structural modes from the
"noise modes," and is a fundamental part
of the identification results presented
in this paper. Its value has been found
to provide a good characterization of the
Po MCF's calculated for each mode and,
in general, a closer examination of the
individual station-by-station MCF data
was unnecessary.

The time shift (4t)y should not be
selected equal to either  (At)] or
(at)2. If equal to (At)), all MCF's
will be computed as 100% in amplitude and
00 in phase, and be of no use. If
equal to (At)j, and at least one trans~
formed station has been used, [¢] and
[%] will each have two identical rows
and Eq. (8) cannot be solved. Setting
(At)3 equal to one-half the value of
(At) 2 has been found satisfactory in
most cases. To clarify the relationship
between these time shifts, refer again
to Fig. 1, which shows a typical place-
ment of data into the response matrices
when three free-response functions are
uged.

CONSTRUCTION OF THE SIMULATED
FREE-RESPONSE FUNCTIONS

Mode shapes used in constructing
the simulated free-response functions
were obtained from a NASTRAN finite-ele-~
ment analysis of an isotropic, uniform-
thickness plate with 8 x 24 square ele-
ments. Data for 65 stations were obtain-
ed by using the analytical mode shape
data (for motion normal to the plate
only) from every other grid point in
both directions, including the outside
border. The first 15 modes of this
analysis were used in forming the
responses. For each desired modal model,
a damped natural frequency, damping
factor, and response amplitude were
arbitrarily selected for each mode. The
effects of randomizing the initial phase
angle for all stations of each mode and
of selecting other than 0° or 180° be-
tween the stations in a mode (i.e.,
complex modes) were studied for several
cases, and ro changes in the identifi-
cation accuracy were noted. Thus, unless
otherwise stated, the contribution of
each mode in the responses was represent-
ed as a damped cosine function multiplied
by an appropriate (positive or negative)
mode shape amplitude constant.




That is, each free-response func-
tion was formed as

15 .
xg () = 2 Vi © k=3 cos[(ud)ktﬂ
k=1
(13)

For this study, each simulated
free-response function consisted of
1000 data points calculated using
Eq. (13), at a sampling rate of 400
samples per second. Uniformly distri-
buted noise was added to these functions
on a function-by-function, rms-percentage
basis. with the rms value of each noise-
free function calculated using all 1000
available data points. The mode shapes
used in forming each modal model were
assigned to the 15 mode indices in the
order determined by the finite-element
analysis.

For ease in interpreting identifi-
cation results, the modal frequencies
were arbitrarily selected for all models
in this study (i.e., the natural fre-
quencies of the plate obtained from the
NASTRAN normal-mode analysis were not
used). Many of the simulated models
were formed by spacing the 15 modal fre-
quencies every 2 Hz from 10.0 to 38.0 Hz,
and setting the modal ¢amping factors and
response amplitudes equal for each of the
modes. Each of these basic modal
models are characterized by a single
modal damping factor and noise per-
centage, and are referred to throughout
this paper for simplicity as "baseline
models."

EVALUATION OF IDENTIFICATION ACCURACY

The accuracy of all mode shave
identifications for this study has
been quantified by computing a "Mode
Shape Correlation Constant,"” MSCC,
between the identified mode shapes and
each of the 15 input mode shapes. The
constant is calculated in a manner
analogous to that of coherence, otten
computed in time-series analysis work.
The functional form is that of the
square of the correlation coefficient
defined in basic statistics, computed
between two sequences of complex numbers.

Mathemztically, if {y;} is a known
input (complex) mode shape, and {y3}
is an identified (complex) mode shape:
T *2
Hu 1 (wy}]

100
T * T « X
(v} vy} 1w, )" (v,

MSCC =

(14)

where T denotes the transpuse and
® the complex conjugate.

The MSCC between two mode shanes
will always range from .aero--for no
resemblence of the two shapes--to 100%--
for perfect rasemblence. Values inter-
mediate between 0.0 and 100.0 can be
interpreted as the amount of coherent
information in the two compared mode
shapes.

The accuracy of identified fre-

quency and damping parameters was
assessed by direct observation only.

RESULTS AND DISCUSSION

In processing a set of free-
response functions wi.n the identifi-
cation algorithm, five primary user-
selectable constants must be chosen.
They are NDOF, NCOL, (At)], (At)3,
and (At)3. Secondary conaiderations
include the selections of data sampling
rate and analog or digital filtering
ranges, the particular stations to be
analyzed in one computer run, and the
absolute starting times of the free-
respongse data (i.e., whether any data
points are skipped at the beginning of
the functions). An optimum selection of
the analysis options is a function of
the characteristics of the data being
analyzed, and "cookbook" instructions
are difficult to develop. The results
to be shown in this section, however,
provide quidelines for their selection
and for judging the sensitivity of the
choices, and illustrate identification
accuracies which may be expected.

All results shown in this paper
were obtained using a vectorized version
of the code on Langley's CDPC Cyber 203
(formerly Star-100) computer. Typical
CPU times for identification were 15 sec-
onds for NDOF = 65 and NCOL = 390, and
340 secon: - for NDOF = 200 and NCOL =
968. The required computer time varied
approximately as the number of columns
used in [¢] and [$], NCOL, and as
the square of the number of allowed
computational degrees-of-freedom, NDOF.

Some Baseline Model Results

-~

Figure 2 shows the time- and fre-
quency~domain responses at measurament
Station No. 1 (a corner of the plate)
for three of the baseline models analyzed
in the study. 1In Figs. 2(a) and 2(b),
the damping tactor, ¢/C., of all 15
modes was set to 2%. The rms noise
levels in these two cases were 2% and
20%, respectively. Similarly, Fig. 2(c)
shows the response of Station No. 1 with



all 15 modes assigned 5% damp:ng and

10% noise. The dashed lines on the

time history plots designate the range
of points used from each function in ITD
analyiles whose results will be pre-
sented in Table I and Figs. 3 through .
The center and right-hand plots in

Fig. 2 show the quadrature (imaginary)
component and molulus, respectively, of
the Fourier transform of the correspond-
irg free-response function.

Table I contains MSCC values for
these three identifications calcu-
lated between each of the 15 input mode
shapes and each identified mode (whose
OAMCF was 2% or larger), rcunded to the
nearest ".hole number. Also included
are the identified fregquencies in
Hertz, the identified damping factors in
percent, and t*: OAMCF for each mode.
The column to the rigtt of the OAMCF
data contains the number of stations of
65, NST, that were used in calculating
the corresponding OAMCF value; only
those stations with non-negligible
modal response (at least 3% of the max-
imum value of the mode) are included in
the calculation. This 3% criterion was
imposeJ on the calculation of OAMCF
because many of the selected 65 measure-
ment stations were located exactly on
mode shape node iines; the variance in
the calculated MCF data for these
stations was generally high. as to be
expected, because very small modal
amplitudes identified for these stations
were used in the calculations. Each of
these identifications were run using
NDOF of 65 and NCOL of 390. The other
20 "modes” obtained in each identifi-
cation were "noise modes," differentiated
by low (<2%) OAMCF values.

For these identifications, the user-
selectable time-shift constants, (4t)g,
(at) 7, and (at) 3, were set to 3/SF,
8/SF, and 4/SF, respectively, where SF
is the data sampling rate. The values
N1 = 3, N = 8, N3 = 4 were used in
obtaining a . identification results
shown in this paper, unless otherwise
noted. ‘These are the values selected
for Fig. 1 in 1llustrating a typical
olacement of free-respoase data into the
two response matrices

Figure 3 shows the 1% identified
(com,.lex]; moue shapes for the 2%-damping,
2%-noise baseline model, corresponding
to the data contained in Table I. These
identified mode shapes are indistinguish-
able from those used in constructing the
model. Note that the ITD algorithm
1dentifies complex mode shapes, consisting
of a magnictude and phase at each sa2lected
measurement staticn: the identified
mode-shape phase angles are included
adjacent to each mode shape, assigned by

consecutive station number from the
center of the circle to the outer ring,
as depicted in the lower~right corner of
Fig. 3; the data for the accompanying
mode shape plots were obtained by the
product of the identified mode-shape
amplitudes and the cosine of the cor-
responding >hase angle.

Figures 4 and 5 show the mode shapes
identified for :che two other baseline
models whose results were .resented in
Table I, also using NDOF of 65 and NCOL
of 390 in the analyses. As before, only
those “"modes”™ with an OAMCF of at least
2% are shown. 1In Fig. 4, for the 2%-
damping, 20%-noise model, the identified
shapes are also indistinguishable from
the exact, input mode shapes, and the
phase~-angle scatter averages only a few
degrees. Ide. :ification results for the
5%-damping, 10%-noise model, provided
in Fig. 5, show mode shapes that are
slightly distorted for modes 11 through
14, with significant phase angle scatter
in several of the modes. In interpret-
ing these results, however, the reaager
is cautioned that more accurate idertifi-
cations are obtainable for these models;
as shown later, allowing higher degrees-
cf-freedom 1n the identification will
increase the accuracy to some degree.
These identificitions all used NDOF of
65 and NCOL of ,90, and the results
typify the effects of changing modal
damping and noise level while holding
all of the algorithm constants fixed.

Note in Table I that an MSCC of
100% was caiculated for each of the
accurately identified mode shapes of the
2%-damping, 2%-noise baseline model,
shown in Fig. 3. Also of interest 1in
these MSCC results is the slight "blend-
ing" of the higher-numbered mode shapes
for the 5%-damping, l0%-noise model,
corresponding to the small distortions
seer: in the plots in Fig. 5.

The Number of Allowed Degrees-of-Freedom

The number of comgutational degrees-
of-freedom allowed in the identification,
NDOF, should be selected equal to the
number of modes excited in the responses
if the free-response functions are
norse-free. For any deviation of the
response data from the exact analytical
form--that is, some level of super-
imposed noise--more degrees-of-freedom
than this must be allowed for accurate
identification. It is somewhat intuitive
that better identification of the under-
lying deterministic modal data may result
when one ailows for the calculation of
extra "noise modes," 1n addition to the
numper of actual structural modes con-
tributing t> the responses, to provide



an outlet in the assumed model for the
noise contribution.

To illustrate the effect of increas-
ing the allowed degrees-of-freedom,
ident1fied modal frequencies for the
2%-damping baseline model, using values
of NDOF from 1 to 75, are plotted in
Figs. 6 and 7 for each of eight increas-
ing levels of superimposed noise. At
each value of NDOF, the identified fre-
quencies are denoted by vertical line
segments at the corresponding frequen-
cies, whose heights are proportioral to
the OAMCF value computed for each mode.
As before, only those identified “modes”
with negligible OAMCF (less than 2%) are
not shown. When the individual seg~
ments align t¢ form a solid, vertical
line, the OAMCF's are all 100% and the
identified modal frequency is invariant
with increasing NDOF. On examining
these eight plots, a consistent trend
in the requirement for increased
degrees-of-freedom to accurately iden-
tify all 15 frequencies, with increased
noise level, is noted. Another interest-
ing trend is that after an NDOF level
is attained for each noise level where
all 15 frequencies are accurate, increas-
ing NDOF above this value did not de-~
grade the frequency identification
accuracy. These plots will be referred
to as "NDOF-frequency maps,"” and have
been found very useful in interpreting
experimental identification results.

The i1dentifications at each NDOF level
in Figs. 6 and 7 were rutn using NCOL
of 300.

The lowest value of NDOF for accu-
rate identification has been found 1in
this study to be related to the signal-
to-noise ratios of the modal responses.
The considerable shifting of the fre-~
quency "lines” in these NDOF-frequency
maps at low values of NDOF results
largely from setting all 15 modal
response levels equal. Wwhen experi-
mental data are processed, the lowest
NDOF values for identification of each
made vary considerably more between
modes than the data shown in Figs. 6
and 7, due to different response levels,
and almost no line shifting occurs.

Typical accuracy at much higher
allowed degrees-of-freedom are included
in Table II for the 2%-damping, 20%-noise
baseline model with anaivses at NDOF of
65, 200, 250, and 300. These iden-
tifications used all 1000 data points in
each of the 65 response functions; that
is, NCOL was made as large as possible
in each case. Although the parameters
for all 15 modes are of acceptabie
accuracy for most applications at NDOF
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of 200, 1t is interesting that the
accuracy (of the damping factors) con-
tinued to increase as NDOF was raised
beyond this point. Only those "mod:s”
with an OAMCF of less than 2% are ex-
cluded from these results; at NDOF of
300, for example, 285 additional

"noise modes" were computed, all of
which are differentiated by the OAMCF
parameter. Also very important is that
no anomalous identification problems

or numerical instabilities were observed
in this or any other identification con-
ducted in this study using such high
values of NDOF. These results suggest
that the ITD algorithm, used with a high
number of degrees-of-freedom, may accu-
rately identify all of the excited
structural modes, for large modal sur-
veys, in one computer run.

Note that the results shown 1in
Table II for NDOF of 65 were not as
accurate as those shown earlier in
Table I for analysis of the . e 2%-damp-
ing, 20%-noise baseline model; the re-
sults in Table 1 were obtained using
NCOL of 390 and those in Table II with
NCOL of 993. The effects of the selec-
tion of NCOL on identification accuracy
will be addressed in a later report
section.

The Selection of (at)y

To help understand the effects of
the user-selectable algorithm constant
(at)] (the time increment between cor-
responding data in the two response
matrices), note from Eg. (9) that the
computed eigenvalues of [A], ax + ibk,
are exponential functions of the product
of the system's characteristic valvues,
Ak, and (4t)]. The desired structural
modal frequencies and damping factors
are then calculated directly from these
eigenvalues by Egs. (10). Using these
relationships, loci of constant damping
factor are plotted in Fig. 8 in the com-
plex a-b piane, for f£3 = wg/(em)
ranging from 0 to 1/(2{At)]). A typical
eigenvalue of [A] is denoted by point
‘k,' whose corresponding natural fre-
quency in radians/sec 1s simply the
angle 03k divided by (4dt)1. Since
equal damping values, Jy, lie on equal
radii in the a-b plane, by Eg. (10},
the contours of constant damping fact-r
(equal to the damping wvalue divided by
the undamped natural freq:ency) will con-
verge tc the point (1,0) for £fq =0
and separate from one another as f3
increases. As C/Ce increases, the
contours lie inside one another, until,
at 100%, the locus is simply the positive
X-axis.

The frequency in Hertz correspond-
ing to 0Bk = 1, denoted as fy, is the



point at which the identified fre-
quencies will “"fold™ because of the
circular nature of the exponentizl func-
tion--analogous to the well-known
“Nyquist folding-frequency” which results
from the circular nature of the discrete
Fourier Transform. That is, all iden-
tified frequencies will fall in the
range O to fy, regardless of their
actual value; only those modal fre-
quencies no larger than £; will be
correctly calculated. The value of f,
is samply 1/(2(At)]). Of course,

this “"eigenvalue aliasing” will lead to
erroneous frequency and damping factor
results for modes with frequencies
greater than f contributing to the
response functions used in the identi-
fication; as with the weil-understood
Nyquist-frequency aliasing, however,

the phenomenon can also be used bene-
ficially, with the results accordingly
adjusted, if the data are pre-filtered
to contain information only in a cert-
ain, known frequency interval.

Obviously, for two eigenvalues of
{A] separated by ¢, any inaccuracy
in their calculation may translate to a
considerable inaccuracy in their cor-
responding modal frequencies and damping
factors, depending on the location in the
a~-b plane. To quantify this character-
istic, Fig. 9 provides contours of mini-
mum and maximum percent deviation in the
identified modal frequencies and damping
factors for three magnitudes of uncer-
tainty in the eigenvalue determination.
Note, in Fig. 9(a), that percent fre-
quency deviations are nea:ly independent
of damping level, and are large only for
values less than 0.1 fy (because the
data are shown on a percent-deviation
basis, and £f 1is small in this range).
For all three uncertainty levels, the
percent frequency deviations are no
greater than 2% at all frequencies at
least 0.2 £y, for C/Cc < 10%8. The
envelopes of maximum perCent deviation in
the damping factor identification, on the
other hand, are considerably larger, as
shown in Fig. 9(b). These data suggest
that damping factors derived from eigen-
values of ?A] subtending small angles
in the a-b plane may be subject to
apprecjable error.

As (at); increases, the fre-
quency interval corresponding to eigen-
values located at Ox = 0 and Ox = =w
decreases, and the eigenvalues for any
two modal frequencies separate in the
a-b plane. When this occurs, a more
accurate analysis generally can be made
of a smaller total frequency interval.
Figure 10 shows typical results of this
effect in the identification of the
2%-damping, 20%-noise baseline model for
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two selections of N; (the number of data
samples corresponding to the time-shift
interval (4t);). The results in

Fig. 10(a) were obtained with N} =1

and those 1in Fig. 10(b) with N} = 3,
holding all other algorithm constants
unchanged. In the polar plots of

Fig. 12, the symbols dencte the loca-
tions of all identified eigenvalues of
(A] in the a-b plane; the eigenvalues
corresponding to the 15 structural modes,
distinguishable from the "noise modes”
whose OAMCF's were ail less than 2%,

lie approximately equally spaced along
the 2%-damping (dashed)line in each
figure. As shown in the tabulated re-
sults, the identification accuracies of
both damping factors and mode shapes
were improved when N) was increased

from 1 0o 3.

An Alternate Method for

Calculating Mocal Damping

In acd3ition to the straightforward
calculation method for the desired modal
damping ractors using the eigenvalues of
{A], shown in Eq. (10), limitred study has
beer. done of an alternate method using
the first pg elerents in the upper and
lower halves of the computed eigen-~
vectors~--data used previously in comput-
ing the MCF values. Based on experience,
the identified damping factors often show
th2 greatest variance of all the computed
modal parameters. By assuming that the
eigenvector data are more accurate than
the identified damping data, a method
similar to the reverse process used 1in
computing the MCF data can be used to
obtain a second estimate of the modal
damping factors.

Mathematically, a form analocous to
that for obtaining the amplitude of a
frequency response function using the
Fourier components of input and response
signals can be used to compute an average
modal amplitude ratio between the 'upper'
and 'lower,' po-element, mode shape
vectors. In particular, if {yyl! is an
upper identified (complex) mode shape, and
{vg} is a lower identified (complex)
moge shape, a Modal Amplitude Ratio (MAR)
can be calculated as:

HugtT Cogt

MAR = r~
37 Luy)

(15)

from which an alternate modal damping

factor can be calculated, using the cor-
responding damped natural frequency,
obtained directly from the eigenvalue o

[A] , by:

wds
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where 0y, = In(MAR)/(4t)3.

This estimate of modal damping was found
more accurate in many cases--hut not
all--particularly for modes with pcor
signal-to-noise ratios. Figure 11

shows modal damping factors identified
by each of the two methods for the
2%-damp:ng, 50%-noise baseline model for
NDOF in steps of 20 from 60 to 200.

Only data for the first 10 modes are
included. Although the data for modes 1
and 2 (circle and square symbols) are
significantly over-estimated by either
method, overall, the data in Fig. 1l1l(b),
oktained i1ndirec*ly using the eigenvector
and identified freguency data, cluster
appreciably closer to the true value of
2% than the data in Fig. 1ll(a), cal-
culated directly from the eigenvalues

of [A].

When the modal damping is calculated
using this alternate method, an MSCC
between t!.: upper and lower pg-element
vectors used in the calculation should
also be formed to be used as an indi-
cation of the consistency of the eigen~-
vector data, which may itself be inaccu-~
rate. A conservative approach would
certainly be to calculate the damping
factors by both methods, and use any
discrepancy in their values as a indi-
cator of inaccurate identification.
Urless otherwise noted, the damping
identification results show.a in this
paper were obtained using the direct
calc?l?tion method from the eigenvalues
of Aj.

Modal Response Level

In ali identification results pre-~
sented thus far, the response levels of
all 15 modes in the simulated models were
set equal; for actual experimental data
this would not be the case. To examine
1dentification accuracy of modes with
significantly different response level,
Figs. iz{(a) and 12(b) show NDOF-fre-
quency maps for the 2%-dampang, 2%-noise
baseline model when the response level
of mode 8 (at 24 Hz) was reduced to 1%
and 5%, respectively, of the level selec-
ted for each of the otiher 14 modes. The
l3-~response case represents the approxi-
mate lower limit at which this mode was
1dentifiable for NDOF up to 75. Com-
pared w.th a similar plot shown earlaier
in Fig. 6{c) for all modes of equal
response level, note that these plots
have several randomly scattered dots,

corresponding to "modes"” with OAMCF less
than 2%, the cutoff used for plotting
the data shown in Figs. 6 and 7. This
cytoff criterion was removed for these
plots to allow the 24-Hz mode data in
Fig. 12(a) to be discernible.

Although Figs. 12(a) and 12(b} show
that the 24-Hz modal frequency was iden-
tified in both cases, these data do not
indicate the accuracy of either the
1dentified mode shapes or modal damping
factors; this information is included in
Figs. 12(c) and 12(d), respectively.

In Fig. 12(c}, MSCC's calculated between
the identified mode shapes and the known
input shape are plotted for each case as
a function of NDOF For the 5%-response
case, denoted by the square symbols, the
MSCC is essentially 100% for all NDOF
above 46; for the l%-response case, on
the other hand. the MSCC value does not
rise above the 83% level. In fact, when
the li-response model was analyzed using
NDOF of 250, the MSCC of the 24-Hz mode
remained at approximately 83%.

Identified modal damping factors
for these cases, calculated both using
Eq. (10) and by the alternate method
discussed in the previous report sec-
tion, are shown in Fig. 12(d). 1In all
cases, the data appear to be appro:céching
the correct value of 2% with increasing
NDOF; the results for the 5%-response
case being closer to the true value than
those for the l%-response case. Addi-
tionally., the damping factors calculatad
by the alternate method using the com-
puted eigenvector data are more accurate
at each value of NDOF than the damping
factors calculated directly from the
identified eigenvalues of (A].

The Selection of NCOL

In establishing the two response
matrices, both the number of rows (equal
to twice NDOF) and the number of columns,
NCOL, must be selected for each identifi-
cation. As shown in NDOF-frequency maps
in Figs. 6, 7, 12(a), and 12(b), the
minimum required NDOF is related to the
signal-to-noise ratio of the modes.

The value for NCOL, denoted by ‘s’ 1n
the THEORY section of this report. 1s
restricted tn be at least twice NDOF,

so that Eq. (8) contai«. no feser equa-
tions than unknowns. An iatuitive upper
limit 1n selecting NCOL corresponds to
the time at which the free-response sig-
nal for the mode to bhe identified becomes
smaller than the noise level; beyond this
point each additional data point used
from the response functions would provide
more noise than additional information
to the identification algorithm.



ORIGINAL PAGE IS
OF POOR QUALITY

The effects of the selection of
NCOL on identification results for the
2¢-dawoing, 20%-noise baseline model
are shown in Fig. 13. To estimate the
t.ime at which the superimposed noise
cxceeds ths signal information in the
frce-responses, a 20-point, ruaning
maan-square value, averaged over all 635
functions nsed for the model, is plotted
in Fiqg. 13(a). These data have been
normalized so that the asymptotically
approached noise level corresponds to
N dB8. Since all 15 modes have the same
response level in this model, the mean-
square value of the free-response signal
for each mode cguals the mean-square
~9is2 lerel whon the function of

Tig. 17’a) ocomals 10 log(l6) or 12 dB.
This n~rresnonds to NCOL of approximate-
lv 225,

rs:nq NDOF 25 65, all 15 modal fre-
aronning for ~his nodel were accurately
1dansified Sov NCOL ranging from 200
“m AT~ L and 4baic 7alnes are not shown.
O£ in~arest. thogh, are the cor-
responding MSTC vaiues and identified
mndal damping factors for these cases.
Trhose results arc chown in Pigs. 13(b)
and 13(c), respectively. To maintain
clarity, data for only the first five
modes (which typify the results obtained
for all 15 identified structural modes)
are included. Of particular interest in
these figyres is the rapid deterioration
of the identification results when NCOL
is lesg than 200. Above NCOL of 200,
the MSCC data are affected only slightly
as NCOL increases to 950, although a
slight downward trend is noted for NCOL
greater than 300. Optimum mode shape
1dentification was obtained for NCOL
ranging from 200 to 300. The identified
modal damping factors, on the other hand,
diverge from the selected value of 2%
considerably faster than the MSCC data
from 1008, as shown in Fig. 1l3(c).
Selecting NCOL near 200 would also pro-
vide the best damping identification
over :he range of NCOL from 170 to 950.
It is of interest to note that the
identified damping factors in Fig. 13(¢)
all tend to approach the correct value
of 2% as NCOL decreases. This effect is
similar to that shown in Pig. 11l(a) for
an increase in NDOF with NCOL held
constant.

Close Natural Frequencies

A classic problem using any modal
identification technique is the accurate
determination of the modal parameters
for two or more structural modes of
approximately the same natural frequency.
Assuming no attempt was made to appor-
tion the force used in exciting the
structure, the response levels of two

modes close in frequency may well be
approximately equal in a set of response
measurements obtained during wide-band
force excitation. If T seconds of
data are available for analysis, the
corresponding frequency-domain functions
will be determined to a resolution of
1/T Hz by Fourier methods. For the
models constructed in this study,

T = 2.5 seconds, which corresponds to a
frequency resolution of 0.4 Hz. To
obtain accurate modal parameters with
methods that rely on visual determina-
tion of response peaks in frequency
spectra or frequency resoonse functions
is unrcasorable when the modal frequency
separation arproaches the frequency
regolution value.

To study the frequency rescluticn
abilitv of the ITD algorithm, several
modal mod2ls were constructed Dy meving
the frecuoncs ¢f mode 8, originaliv ah
24.0 Bz in the Dhaseline model, to 2
lover wralus, nlosz to mofe 7 at 22.0 Hz.
Al 22 othar mrdcos were maintained at
their oricineal spaning of 2 Bz from
10.0 ~» 38.06 3z, Table III shows the
identification results using the 2%-damp-
ing, 2%-noise baseline model, for 0.10,
0.05, and 0.01 Hz frequency sSeparation
between nodes 7 and 8. Sixty-five
degrees-of-freedom, with NCOL of 390,
were used in the identifications. At
each frequency separation value, the
damping in mode 8 was successively
changed from 2% (the same value assigned
to mode 7), to 3%, to 10%8. For all
three frequency separations, near-perfect
identif